Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum.
نویسندگان
چکیده
Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.
منابع مشابه
Down-Regulation of Small Rubber Particle Protein Expression Affects Integrity of Rubber Particles and Rubber Content in Taraxacum brevicorniculatum
The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP) has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1-5) were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. ...
متن کاملDevelopment of rubber‐enriched dandelion varieties by metabolic engineering of the inulin pathway
Natural rubber (NR) is an important raw material for a large number of industrial products. The primary source of NR is the rubber tree Hevea brasiliensis, but increased worldwide demand means that alternative sustainable sources are urgently required. The Russian dandelion (Taraxacum koksaghyz Rodin) is such an alternative because large amounts of NR are produced in its root system. However, r...
متن کاملPolyphenoloxidase silencing affects latex coagulation in Taraxacum spp
Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenoloxidizing enzymes. Here we...
متن کاملPolyphenoloxidase silencing affects latex coagulation in Taraxacum species.
Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here,...
متن کاملMolecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis.
cis-Prenyltransferase catalyzes the sequential condensation of isopentenyl diphosphate with allylic diphosphate to synthesize polyprenyl diphosphates that play vital roles in cellular activity. Despite potential significance of cis-prenyltransferase in plant growth and development, no gene of the enzyme has been cloned from higher plants. Using sequence information of the conserved region of ci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 158 3 شماره
صفحات -
تاریخ انتشار 2012